
To Stream or not to Stream

Jeffrey Sickel

Corpus Callosum Corporation
Evanston, IL 60202 USA

jas@corpus-callosum.com

ABSTRACT

This paper describes a technique to manage multiple serial devices that switch
data transmission modes between request-response and streaming protocols. It
utilizes the ideas of coroutines and communicating sequential processes to build
concurrent input and output processing routines for each device. The example
program leverages Limbo�s buffered channels to concurrently queue and process
data from multiple inputs in soft real-time.

1. Introduction

Scores of researchers have promoted various structured programming techniques to manage
concurrency over the years. Conway [1], Dijkstra [2], Hoare [3,4], and Kahn and MacQueen [5]
have all contributed to the body of knowledge that frames how concurrent programs are written
today. Yet, even with this history, research, and practice of programming, the processing of
input and output (I/O) continues to be reduced to routines that must run to completion before
another task can continue. This inherent single-tasked nature of handling I/O means that user
programs, especially with graphical front ends, need to investigate concurrent approaches to
managing multiple I/O interfaces. For example, reading data from a slow remote device while at
the same time needing to service other input tasks requires managing system state successfully
to prevent blocking conditions from interrupting the logic flow.

Coroutines, coined by Conway and expanded by later researchers, are a proven way to handle
various issues surrounding the logical segmentation of code. The definition, as published by
Conway [1:396], elucidated separability, or modularity:

[The coroutine] may be coded as an autonomous program which communicates with
adjacent modules as if they were input or output subroutines. Thus, coroutines are
subroutines all at the same level, each acting as if it were the master program when in
fact there is no master program.

Leveraging this modularity helps in designing optimal input- and output-handling routines
based on machine or process state at any given time. Though the logic is modularized, state
changes stored by the coroutines do not fully model a concurrent or parallel system as the join
required for two coroutines to exchange data will cause at least one to wait, or block, until the
other is able to send or receive data to the peer (see Knuth [6] for examples).

In order to achieve greater concurrency a mechanism is required to leverage the I/O handling of
coroutines into a more approachable framework. The seminal paper by Hoare [3],
Communicating Sequential Processes (CSP), provides such a framework and influenced the design
of the Limbo programming language. CSP is the mechanism used by Limbo channels to provide
bi-directional communication between processes. Limbo processes are able to run concurrently,
in parallel if the underlying hardware supports it, by leveraging constructs provided by CSP.
Ritchie [7] describes the simplified use of Limbo channels to handle reading data from a single
device. Updates to Inferno and Limbo since Ritchie�s document now include buffered channels, a

 2

language extension that allows for up to n buffer size of values to be sent without blocking. This
paper contributes to the available documentation on using Limbo channels to manage concurrent
I/O tasks.

The final development stage of a new aero-acoustic levitator (AAL) [8] required a program to
interface, control, and display data from various serial devices. Some of these devices use a sim
ple request-response protocol, whereas others switch from request-response communication to
a streaming protocol. All of the devices operate in modes where sending a request and then
blocking to wait for a response will not suffice, as there are certain conditions where a message
will be sent from the device out of order from a sequential request-response loop initiated by the
user control program. In order to manage these message states, this implementation uses multi
ple asynchronous processes as coroutines to handle all of the data management and machine
control. The user is presented with a seamless interface isolated from the underlying serial com
munication tasks.

The following sections present aal/pyro (Figure 1), a Limbo program that uses CSP programming
techniques to manage the I/O from multiple devices. The system combines a remote pyrometer
with a linear XY translator, three serial devices in total. The program plots, and optionally logs,
the stream of temperature measurements sent from the pyrometer. Position of the pyrometer is
controlled using the XY translators through numeric key entry and a graphical view that accepts
coordinates converted from mouse input. These tasks are accomplished by building program
structures to handle I/O from the various serial interfaces. The implementation leverages
Limbo�s buffered channels for inter-process communication to control parallel data feeds.

Figure 1 aal/pyro application

2. Design

The aal/pyro program is a graphics interface that manages I/O from multiple physical devices.
Different serial communications protocols are used to process data from each device. Blocking
conditions common in I/O routines are eliminated from the control flow by separating each task
into independent processes (thought of as coroutines). The program manages these coroutines
by communicating through Limbo channels. By isolating the blocking functions into separate
coroutines, the program is able to run seamlessly without interrupting the interactive program
flow. The Limbo alt (alteration) statement [9] is used to manage concurrent communications
between each of the key coroutines that depend on data processing. The alt is like a case or
switch statement but specific for handling multiple communications channels. Thus the program
logic can be declared in simple synchronous terms even while handling asynchronous events.

On startup, the pyro process (Figure 2) spawns off a single timer process as a mechanism to

 3

signal the pyro process to flush any out-of-sync communications from the XY translator (Zaber).
The timer does nothing until a connection is made to remote devices. The main alt event loop in
the pyro process handles user interaction and drawing routines representing the coordinate
space of the Zaber devices. Plotting and other drawing updates are managed using separate pro
cesses started after connection to the Exactus pyrometer is made.

aal/pyro

timer
Zaber
reader

animate

Exactus
Reader

animproc plotscan

byte reader scanregion

Figure 2 aal/pyro processes

All serial devices have a minimal data structure referred to as a port. For simplicity, each port
can be opened from a serial device file using sys−>open() or via sys−>dial() to connect to a
remote service. The connection routine is itself spawned off from the pyro process so that the
blocking open() or dial() calls do not inhibit other user interface interaction. A message will be
sent over a channel to the pyro process notifying whether a successful connection was made. A
valid connection will enable additional UI elements and spawn a dedicated process to manage
reading from the device.

Connecting to the Exactus pyrometer starts up a series of other processes. The first is the reader
used to analyze the different input data from the device. The reader spawns off a blocking byte
reader that simply receives all data from the pyrometer serial interface and sends each byte back
over a buffered channel, decoupling the analysis from the physical device. A separate process
group is used for on-screen drawing. The animproc process is spawned after connection to the
pyrometer and plots temperature data using a coordinated animate process. A separate plotscan
process is created by a user-initiated event to plot temperature data in relation to the axial posi
tion of the pyrometer. Each of the interfaces is declared in its own module as defined in the fol
lowing sections.

2.1. Zaber

The Zaber XY translators are interfaced via a single RS232 link that communicates with both the
X and the Y linear stage. The serial protocol provides a clean, fixed byte-length message format
for both sending and receiving data. Though the protocol works like a sequential transmit-
response operation, not all commands to the device return a response message. Additionally,
there is no guaranteed order to the responses and there are certain cases where the device
issues state data interleaved between other response messages.

The connection to the device creates an instance of a Zaber port:

Port: adt

{

pid: int;

local: string;

ctl: ref Sys−>FD;

data: ref Sys−>FD;

rdlock: ref Lock−>Semaphore;

 4

wrlock: ref Lock−>Semaphore;

buf: array of byte;

write: fn(c: self ref Port, b: array of byte): int;

};

After successfully connecting to and opening the device, the pid is set to the process id of the
spawned off reader(). A buffer of received bytes is stored in the port structure. The semaphore
rdlock is used as the bytes buffered in the Zaber reader process are validated and consumed in
the pyro process.

Spawning the reader off into its own process allows the blocking sys−>read() call to continually
read data without interfering with the rest of the application event management. Data received
from the device is stored in a buffer until a subsequent routine polls the buffered data.

reader(p: ref Port, pidc: chan of int)

{

pidc <−= sys−>pctl(0, nil);

buf := array[1] of byte;

for(;;) {

while((n := sys−>read(p.data, buf, len buf)) > 0) {

p.rdlock.obtain();

if(len p.avail < Sys−>ATOMICIO) {

na := array[len p.avail + n] of byte;

na[0:] = p.avail[0:];

na[len p.avail:] = buf[0:n];

p.avail = na;

}

p.rdlock.release();

}

error, attempt reconnect and try again

openport(p);

}

}

The parent pyro process checks for responses using ad hoc interleaves with directed timeouts.
This is accomplished by calling readreply() whenever the parent processes needs to poll data
from the device. Each readreply() call passes a millisecond time out parameter to enable logic
flow to continue if a response has not be received.

The reply may be nil due to a timeout. If the response is not returned, it does not matter to the
rest of the system state as no dependency is based on actual responses unless specifically
requested in another routine. Scanning processes, discussed later, require exact position details
and thus explicitly wait until the proper return has been received.

readreply(p: ref Port, ms: int): ref Instruction

{

if(p == nil) return nil;

if(ms < 0) ms = 60000; # arbitrary maximum of 60s

r : ref Instruction;

for(start := sys−>millisec(); sys−>millisec() <= start+ms;) {

a := getreply(p, 1);

if(len a == 0) {

sys−>sleep(1);

continue;

}

return a[0];

}

return r;

}

Readreply() calls the function getreply() to scan the buffer and check for valid instructions.

 5

getreply(p: ref Port, n: int): array of ref Instruction

{

if(p==nil || n <= 0)

return nil;

b : array of byte;

p.rdlock.obtain();

if(len p.avail >= 6) {

if((n*6) > len p.avail)

n = len p.avail / 6;

b = p.avail[0:(n*6)];

p.avail = p.avail[(n*6):];

}

p.rdlock.release();

a : array of ref Instruction;

if(len b) {

a = array[n] of { * => ref Instruction};

for(j:=0; j<n; j++) {

i := a[j];

i.id = int(b[(j*6)]);

i.cmd = int(b[(j*6)+1]);

i.data = b[(j*6)+2:(j*6)+6];

}

}

return a;

}

Access to the port available data buffer is coordinated between the Zaber reader() process and
any calls to the getreply() function through the semaphore p.rdlock. The semaphore is used to
insure that the byte reading and message interpretation do not conflict while accessing the
buffer. The getreply() routine obtains the semaphore lock, then checks the length to determine if
a valid message is contained in the data. If the buffer contains enough bytes for n messages, it
will store those bytes and trim the buffer. The semaphore is then released to allow the Zaber
reader process to continue filling the buffer as new bytes are received from the device. This
coordinated hand-off using the readreply() loop means that timeouts can be used while polling
for new messages from the XY translators without blocking the pyro process.

2.2. Exactus

Making the Exactus pyrometer control transparent to the end user is the primary task of the pyro
program. The device is connected through an RS232 or RS422 interface. The AAL connects to
the pyrometer over TCP/IP using a Perle IOLAN SDS as a proxy for transferring the raw bytes to
and from the device. The Exactus uses two serial protocols for normal operation: a request-
response protocol known as Modbus, and a raw byte stream of data termed the legacy Exactus
mode. When in the streaming mode, it is capable of transmitting up to one measurement per
millisecond. Though this rate is not fast by modern computing standards, the mode switching
over the same serial interface defines the way we have to implement the byte reader.

The pyrometer streaming mode leverages buffered channels to send decoded data frames to the
animproc process that is dedicated to converting those data into numerical forms presented in a
graphical view and optionally to a log file. On the one hand, this is no different than storing the
data in a buffer and having another process continually poll for new entries in the same way one
would let the request-response loop manage synchronous communications. But in this case the
reader process isolates the mode switching and continually monitors the input bytes for proper
message structure for both states. The resulting data streams are typed as they are read and
subsequently handed off to the respective end points.

 6

2.2.1. Modbus

On startup, the pyrometer communicates over its serial link using the Modbus RTU protocol.
Modbus is a communications protocol used by many industrial devices and comes in three imple
mentations: RTU, ASCII, and TCP/IP. The Exactus uses a subset of the RTU protocol to read and
write coil and register values on the device. Each message is framed by 3.5-character times of
silence (at 115.2kbps, a 303.819µs break between messages). All messages must be initiated by
the aal/pyro program, as it is the master node in the serial configuration. The primary user
interaction that utilizes the Modbus mode is to change the sampling rate, known as graph rate,
and switch back into the Exactus streaming mode during actual data collection.

The Limbo Modbus module has been modeled on the 9P or Styx modules due to its transmit and
response message structure. There are 19 function codes and an error type declared within the
data structure. Unlike the incremental pairing of the T and R types in 9P, Modbus uses the same
function code values when declaring both the transmit and response structures. For example,
the TMmsg structure:

TMmsg: adt {

frame: int;

addr: int; # 1 or 2 bytes

check: int; # 0 or 2 bytes

pick {

Readerror =>

error: string;

Error =>

fcode: byte;

ecode: byte;

Readcoils =>

offset: int; # 2 bytes, 0x0000 to 0xFFFF

quantity: int; # 2 bytes, 0x0001 to 0x07D0

Readdiscreteinputs =>

offset: int;

quantity: int;

Readholdingregisters =>

offset: int;

quantity: int; # 2 bytes, 0x0001 to 0x007D

&

read: fn(fd: ref Sys−>FD, msglim: int): ref TMmsg;

packedsize: fn(nil: self ref TMmsg): int;

pack: fn(nil: self ref TMmsg): array of byte;

unpack: fn(b: array of byte, h: int): (int, ref TMmsg);

mtype: fn(nil: self ref TMmsg): int;

};

is nearly identical to the RMmsg structure for received data. As the TMmsg is requesting data
from a certain register or coil, the return RMmsg message would include the actual results, as in:

Readholdingregisters =>

count: int;

data: array of byte; # registers, N (of N/2 words)

After a process writes a TMmsg, it will block waiting for the reply by calling readreply():

EPort.readreply(p: self ref EPort, ms: int): (ref ERmsg, array of byte, string)

{

if(p == nil)

return (nil, nil, "No valid port");

limit := 60000; # arbitrary maximum of 60s

r : ref ERmsg;

b : array of byte;

err : string;

for(start := sys−>millisec(); sys−>millisec() <= start+ms;) {

(r, b, err) = p.getreply();

if(r == nil) {

 7

if(limit−−) {

sys−>sleep(5);

continue;

}

break;

} else

break;

}

return (r, b, err);

}

Note the similarity to the readreply() used to access the Zaber devices. Both of these use one
function in a loop to poll the buffer through the getreply() function. By doing so, the developer
can schedule events as needed and continue execution with simple recovery in the case of an
error.

2.2.2. Streaming

The Exactus legacy streaming mode is a setting where the device sends out a continuous stream
of messages at a set rate. The four message types are temperature, current, dual (temperature
and current), and internal device temperatures. The stream contains packets of data messages of
variable length that consist of a header byte defining the type, followed by one or more 32-bit
IEEE 754 binary floating point values. The portion of the packet encompassing the floating point
bytes may include escape codes masking the type and other reserved bytes within the message,
thus creating a variable length packet.

The temperature and current types have a variable packet size of 5-9 bytes, determined by the
escape sequences used in packing the message. The dual and device types packet size is 9-17
bytes in length. The lack of a length attribute in the Exactus message protocol mandates that
each byte received be scanned and evaluated to test for message completion. The data structure
used in Limbo to represent an Exactus message is:

Emsg: adt {

pick {

Temperature =>

degrees: real;

Current =>

amps: real;

Dual =>

degrees: real;

amps: real;

Device =>

edegrees: real;

cdegrees: real;

Version =>

mode: byte;

appid: byte;

vermajor: int;

verminor: int;

build: int;

Acknowledge =>

c: byte;

}

unpack: fn(b: array of byte): (int, ref Emsg);

temperature: fn(m: self ref Emsg): real;

current: fn(m: self ref Emsg): real;

dual: fn(m: self ref Emsg): (real, real);

device: fn(m: self ref Emsg): (real, real);

acknowledge: fn(m: self ref Emsg): byte;

text: fn(m: self ref Emsg): string;

};

 8

There is no hinting for the sampling time from the device; the receiver must calculate the timing
interval based on the receipt of bytes. The timing accuracy depends not only on the resolution of
sys−>millisec() but also on any latency in the receipt of the bytes from the device. Though
latency can be an issue at higher transmission rates, the maximum 1kHz sample rate from the
pyrometer is successfully handled.

2.2.3. Byte stream processing

Switching states between Modbus and Exactus modes requires a slightly more complex process
structure for validating bytes received from the device than defined for the Zaber interface.
Aal/pyro creates a reference EPort to store all of the connection elements:

EPort: adt

{

mode: int; # Exactus or Modbus

maddr: int; # Modbus address

temp: real; # Last measured temperature

rate: int; # Graph rate

path: string;

ctl: ref Sys−>FD;

data: ref Sys−>FD;

wdata: ref Sys−>FD;

rdlock: ref Lock−>Semaphore;

wrlock: ref Lock−>Semaphore;

buffer: array of byte; # bytes from reader

pids: list of int;

tchan: chan of ref Exactus−>Trecord;

ms: int; # ms start of last packet

write: fn(p: self ref EPort, b: array of byte): int;

getreply: fn(p: self ref EPort): (ref ERmsg, array of byte, string);

readreply: fn(p: self ref EPort, ms: int):

(ref ERmsg, array of byte, string);

};

When a process is spawned off to connect to the device, the path is stored and sys−>dial() is
called. After successfully establishing a connection, the members ctl, data, and wdate are popu
lated using sys−>open(). The blocking calls sys−>dial() and sys−>open() mean that it is important
for the main loop to have started this connection routine concurrently as to not block any other
elements of the interface or data handling of other I/O components. On successful initialization,
the connection process sends a command back over a channel to the pyro process and then
exits. The notification that the Eport has been initialized updates the interface and spawns off
the animproc process used to plot any data from the pyrometer.

The interesting members of the data structure are the mode, temp, rate, pids, and tchan, as they
are updated based on user interaction controlling the state of the device. Any commands that
read or write value changes must first set the device to Modbus mode before making any further
requests. The device will be switched back to Exactus streaming mode after the sampling rate is
set and data collection is started. The temp variable is used as storage and a lookup mechanism
for the most recently received temperature message from the pyrometer. Rate is a hint field set
when the user changes the graphing and sampling rate of the device. The use of pids provides a
list of subprocess ids to the parent process in case they need to be terminated.

The channel tchan is used when the device is in the streaming mode. When tchan is not nil, then
temperature data will be sent from the reading process to another process that acts as a listener.
This enables the animproc graphing process to be started independently from the reader. When
a frame of data from the stream is available, it is sent over the tchan channel to the animproc
process for handling within the graphics system.

The two processes that manage the Exactus serial communications are a reader() spawned by the
pyro process, and the blocking bytereader(), spawned off by the reader to pick off bytes from the
data stream:

 9

bytereader(p: ref EPort, c: chan of (int, byte), e: chan of int)

{

p.pids = sys−>pctl(0, nil) :: p.pids;

buf := array[1] of byte;

while(sys−>read(p.data, buf, len buf) > 0) {

c <−= (sys−>millisec(), buf[0]);

}

e <−= 0;

}

The channel chan of (int, byte) is a buffered channel created in the reader process that decouples
the blocking reader from the actual decoder used to validate the data stream. The insertion of
the sys−>millisec() in the tuple is used to mark the receipt time of the first byte that begins a
message. Latency may offset the accuracy, but it does provide a mechanism to represent time
between data messages from the pyrometer.

reader(p: ref EPort)

{

p.pids = sys−>pctl(0, nil) :: p.pids;

c := chan[BUFSZ] of (int, byte);

e := chan of int;

spawn bytereader(p, c, e);

for(;;) alt {

(ms, b) := <− c =>

p.rdlock.obtain();

n := len p.buffer;

if(n == 0) {

p.ms = ms; # used in Trecord, track first received

l : list of byte;

if(p.mode == ModeModbus) l = SMBYTES;

else l = SEBYTES;

if(!ismember(b, l)) { # frame error

p.rdlock.release();

continue;

}

}

na := array[n + 1] of byte;

if(n) na[0:] = p.buffer[0:n];

na[n] = b;

if(p.mode == ModeExactus && p.tchan != nil) {

(i, m) := Emsg.unpack(na);

if(m != nil) {

t := ref Trecord(p.ms, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 1.0);

pick x := m {

Temperature => t.temp0 = p.temp = x.degrees;

Current => t.current1 = x.amps;

Dual =>

t.temp0 = p.temp = x.degrees;

t.current1 = x.amps;

Device =>

t.etemp1 = x.edegrees;

t.etemp2 = x.cdegrees;

* =>

t = nil;

}

if(t != nil) {

p.tchan <−= t;

if(n > i) na = na[i:];

else na = nil;

}

}

}

p.buffer = na;

 10

p.rdlock.release();

<−e => # bytereader exited, try again

openport(p);

spawn bytereader(p, c, e);

}

}

3. Graphical interface

The application has two primary graphical components: a representation of the XY position of the
pyrometer and a temperature plot of data received. The pyro window provides a consolidated
interface into the concurrent processes used to coordinate all of the I/O from the attached
devices. The user can initiate an additional view that combines the position and temperature
data into a consolidated scan plot. By providing a simplified view on top of the coordinated
coroutines, the pyro process is able to synthesize the translator control and pyrometer data
acquisition into a concise view that hides the multiple processes from the user.

3.1. Translator control

The Zaber XY translators create a 13x13mm region where the pyrometer can be focused. The
data that are returned by the device are in micro-steps and are converted to millimeters for user
viewing and numerically entered changes. There is an additional graphical panel that presents
the position as a reticle that can be moved by a click in the view. The graphical interaction is
managed completely within the pyro main alt loop using the zcmd channel:

c := <−zcmd =>

if(dflag) sys−>fprint(stderr, "zcmd: ’%s’0, c);

if(!plot.lock) { # max microstep: 131327

(nil, toks) := sys−>tokenize(c, " ");

pnt := Point(int hd tl toks, int hd tl tl toks);

ms := real MAXMICROSTEP / real plot.bimg.r.dx();

x1 := real pnt.x * ms;

y1 := real pnt.y * ms;

zsend(Instruction.newwithval(1, Zaber−>Cmoveabsolute, int(x1)));

zsend(Instruction.newwithval(2, Zaber−>Cmoveabsolute, int(y1)));

}

The zcmd is a string channel named for use within the Tk graphics system. An on-screen Tk
panel sends X and Y coordinates over the channel. If the panel plot has not been locked by the
user to ignore the commands, then the coordinates will be converted into the micro-steps
required by the translator and written to the device. The function zsend() encodes the instruction
into an array of bytes and writes them to the device in order to move to the assigned absolute
position. A zsend() call is addressed to each translator as they are moved independently. The
Zaber devices will not confirm an instruction until after the physical move has completed. The
return values from the device may be received out of sequence to the calling convention as the
time of travel between positions is the determining factor. There is no requirement to wait for
the return result due to the use of a timer process checking for new queued return values before
updating the display.

The timer process sends a message over tchan once per second. The pyro main alt loop receives
the timeout message over the tchan and processes the event:

<−tchan =>

if(!scanning) {

if(zport != nil)

while((r := zaber−>readreply(zport, 1)) != nil)

processzaber(r);

if(epid > 0) ecmdc <−= PyroPlot−>SAMPLE;

else if(eport != nil)

updatedegrees(exactus−>temperature(eport));

}

 11

The scanning check ensures that the pyro process will only poll the Zaber buffer when the
plotscan process is not actively running. Zaber translator messages are processed before
attempting to update an on-screen temperature readout. The channel ecmdc is used to message
the animproc process requesting a new temperature measurement. A response communication
would then update the on-screen temperature. If animproc is terminated, then the epid is set to
zero and a blocking call to the pyrometer is made; this requires the main loop to wait for a return
from the pyrometer before updating the display and continuing to the next instruction.

3.2. Temperature plot

Graphic plotting of temperature data is managed through the animproc process spawned after
successfully connecting to the Exactus device. Commands controlling logging, sampling rate,
and whether or not to plot the data are sent over a channel by the pyro process. The buffered
channel recc, of Exactus Trecord type, is used to receive data processed by the Exactus reader
while operating in streaming mode:

Trecord: adt {

time: int;

temp0: real;

temp1: real;

temp2: real;

current1: real;

current2: real;

etemp1: real;

etemp2: real;

emissivity: real;

pack: fn(nil: self ref Trecord): array of byte;

unpack: fn(b: array of byte): (int, ref Trecord);

};

The Trecord is created by parsing values sent from the Exactus stream data. The time field is the
milliseconds from the beginning of a log of the data. Logging to disk will use the pack() function
to create the binary data written out to a filesystem.

Starting animproc will in turn spawn off another process to manage the actual drawing routines.
This new process, animate, receives real values over another buffered channel:

animate(top: ref Tk−>Toplevel, p: ref Plotter, c: chan of array of real)

{

for(;;) {

data := <−c;

if(!p.paused)

p.mavg = update(top, p, data);

}

}

All screen drawing is buffered in a fixed-length array of real values before being sent to the
animate process. The effect of this buffering is to allow the graphical plot to always present at
least one minute of historical data. The generated plot point is an average of all the buffered
data points; this works well for the full spectrum of graphing rates available from the Exactus
pyrometer.

3.3. Scanning

During the course of a levitation experiment, it is important to verify that the pyrometer is
focused on the sample in order to acquire the best temperature reading possible. In order to
accomplish the optimal focusing of the pyrometer, the XY translators are used to scan a region in
one dimension while simultaneously collecting temperature and position data. The scanning rou
tine requires all of the prior I/O related functionality in order to accomplish its task in the pyro
application.

Scanning is handled by spawning off a dedicated plotscan process to create and control a new

 12

window where a plot is drawn showing position on the X axis and temperature on the Y axis. The
creation of a plotscan process sets up the window and spawns off a separate short-lived process
to move the XY translator and return temperature data for graphing:

c := chan[8] of (int, int, real);

comp := chan of int;

spawn scanregion(rect, c, comp);

The scanregion process calculates new positions to move the translator and sends command
messages in a loop to make the move occur. At each position a temperature measurement is
made and the resulting data is sent over a buffered channel, c, back to the plotscan process
where an plot will be rendered on the display. Once the scan completes, a final message will be
sent to move the pyrometer back to the starting position. The scanregion process will then send
a message over the comp channel and promptly exit.

All other aal/pyro processes continue to run and update their graphical components while the
scanning is taking place. Once the scanregion process has exited, it is possible for the user to
click on the graphic temperature plot to move the pyrometer to a better centered location. The
user may then repeat the process to verify optimal pyrometer placement during the experiment.

4. Conclusion

System development can be difficult enough without having to worry about I/O blocking a pro
cess or threaded programs causing a deadlock. This example detailed how coroutine and CSP
models can be used to successfully manage multiple devices by isolating the I/O handlers. The
decoupling of the blocking sys−>read() call, when managed with Limbo channels, can be a useful
tool for separating out components of a program to process I/O.

Learning to leverage Limbo channels for inter-process communication may be a foreign idea
when coming from other programming languages. Though channels behave like pipes in Unix,
the ability to create typed data and easily pass it between processes enables the model to work
quite well for concurrent programs. The implementation uses this feature to create independent
byte stream readers that gracefully handle serial protocol changes while continually consuming
input from external devices.

There are areas where this model could be improved. For one, the reallocation of the buffer
array used to store bytes from the input stream can be optimized. Implementing a new data
structure to eliminate the semaphore locking could facilitate programming logic simplification.
For now, with the constraint of the serial line transmission speeds available to the remote
devices, the system performs well enough to capture transmissions from the pyrometer at its
maximum rate of 1kHz.

The Limbo source is available upon request from the author.

wc results:

1103 3215 21536 exactus/exactus.b

196 578 4055 exactus/exactus.m

1143 3775 27058 modbus/modbus.b

248 787 5897 modbus/modbus.m

424 1276 8449 zaber/zaber.b

104 248 1944 zaber/zaber.m

1515 5351 41132 aal/appl/pyro/pyro.b

365 1035 9056 aal/appl/pyro/pyroplot.b

29 72 556 aal/module/pyroplot.m

5127 16337 119683 total

 13

5. Acknowledgements

The author wishes to thank Belma Hadziselimovic and Omer Hadziselimovic for providing advice
on the proper use of the English language, and Jason Bubolz for providing a critical review.

The original work was performed under contract to Physical Property Measurements, Inc. for
RWTH Aachen University Institute of Mineral Engineering. Funding for this project was provided
by the German Research Association number DFG: INST 222/779-1 FUGG and the Federal state
of North Rhine-Westphalia number NRW: 121/4.06.05.08.-566.

6. References

[1] Melvin E. Conway. 1963. Design of a separable transition-diagram compiler. Commun. ACM 6, 7 (July 1963),
396-408. DOI=10.1145/366663.366704 http://doi.acm.org/10.1145/366663.366704

[2] E. W. Dijkstra. 1965. Solution of a problem in concurrent programming control. Commun. ACM 8, 9 (September
1965), 569-. DOI=10.1145/365559.365617 http://doi.acm.org/10.1145/365559.365617

[3] C. A. R. Hoare. 1978. Communicating sequential processes. Commun. ACM 21, 8 (August 1978), 666-677.
DOI=10.1145/359576.359585 http://doi.acm.org/10.1145/359576.359585

[4] C. A. R. Hoare. 2004. Communicating Sequential Processes, current edition published on-line at
http://www.usingcsp.com/.

[5] G. Kahn and D. B. MacQueen. 1977. Coroutines and networks of parallel processes, Information Processing. In
Proceedings of IFIP Congress, 77:993-998. http://hal.archives-ouvertes.fr/inria-00306565/.

[6] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algorithms, pp.
193-231. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

[7] Dennis M. Ritchie. The Limbo Programming Language, In Inferno Programmer’s Manual, Volume Two, pp. 91-100.
Vita Nuova Holdings Ltd., York, 2000.

[8] Jeff Sickel, and Paul C. Nordine. 2010. Effective Resonant Frequency Tracking With Inferno, In Proceedings of
IWP9, 2010: 42-52.

[9] Sean Dorward, Rob Pike, and Phil Winterbottom. 1997. Programming in Limbo. In Proceedings of the 42nd IEEE
International Computer Conference (COMPCON �97). IEEE Computer Society, Washington, DC, USA, 245-.

